






	Exemplo 3	
	Determine as coordenadas cartesianas dos pontos A(3	,45°) e B (-2,90°).
	$x = 3\cos(45^\circ) = \frac{3\sqrt{2}}{2}$ $x = -2\cos(90^\circ) = 0$	$\begin{cases} x = r\cos(\theta) \\ y = r\sin(\theta) \end{cases}$
	$y = 3sen(45^\circ) = \frac{3\sqrt{2}}{2}$ $y = -2sen(90^\circ) = -2$	$y = rsen(\theta)$
	$A = \left(\frac{3\sqrt{2}}{2}, \frac{3\sqrt{2}}{2}\right)$ $B = (0,-2)$	$\int r^2 = x^2 + y^2$
	()	$\begin{cases} r^2 = x^2 + y^2 \\ \theta = arctg\left(\frac{y}{x}\right), x \neq 0 \\ x = 0, \theta = \pm 90^{\circ} \end{cases}$
	Exemplo 4	v 00 ,00°
	Determine as coordenadas polares dos pontos:	$x = 0, 0 = \pm 90$
	$A = (\sqrt{3},1)$ $B = (0,-2)$	_t.
	$r^2 = \left(\sqrt{3}\right)^2 + 1^2 \Rightarrow r = \pm 2$	2 y 1 A
_	$\theta = \arctan\left(\frac{1}{2}\right) = \arctan\left(\sqrt{3}\right)$ $\theta = \pi/6 \text{ ou } \theta = 7\pi/6$	0 x.
	$r^{2} = (\sqrt{3})^{2} + 1^{2} \Rightarrow r = \pm 2$ $\theta = \arctan(\frac{1}{\sqrt{3}}) = \arctan(\frac{\sqrt{3}}{3}) \theta = \pi/6 \text{ ou } \theta = 7\pi/6$ $A = (0.7)^{2} = \pi/6 \text{ou } \theta = \pi/6 $	-2 -1 0 1 2
		-2 B
	$X = 0 \Rightarrow \theta = \pm 90^{\circ}$ $B = (-2,90^{\circ})$ $B = (2,-90^{\circ})$	

	Determine:	
ы	a) As coordenadas polares do ponto P(2,2)	
	b) As coordenadas cartesianas do ponto $Q(4{,}120^\circ)_{\cdot}$	
	c) As coordenadas polares do ponto S(0,4).	
		-
		1
	a) Você pode começar calculando o valor de r:	
	$r^2 = (2)^2 + (2)^2 = 8 \Rightarrow r = \pm 2\sqrt{2}$.	
	E em seguida o valor de $\theta\colon\theta=\text{arctg}\!\left(\frac{2}{2}\right)\!=\!\text{arctg}\!\left(1\right)\!\Rightarrow\!\theta=45^\circ$.	
	Assim, você fazer dois pares de coordenadas polares $\left(-2\sqrt{2},45^\circ\right)$ e $\left(2\sqrt{2},45^\circ\right)$.	
	As coordenadas cartesianas do ponto P(2,2) indicam que o mesmo está no	
	primeiro quadrante. Daí, você pode concluir que as coordenadas polares do	
	ponto P são (2√2,45°).	
	4 3 2 3 4 5 Feyra 04	
	(-2/2/45)) / 3	
	l]
	b) Inicie calculando os valores de x e y:	-
	$x = 4\cos(120^\circ) = 4 \cdot \left(\frac{-1}{2}\right) \Rightarrow x = -2$	
	$y = 4sen(120^{\circ}) = 4 \cdot \left(\frac{\sqrt{3}}{2}\right) \Rightarrow y = 2\sqrt{3}$	
	Assim, as coordenadas cartesianas do ponto Q são $\left(-2.2\sqrt{3}\right)$.	

3 – Determine uma equação polar para as curvas que tem equações cartesianas dadas:			
a) $y = 1 - 2x$			
Solução.			
b) $x^2 + y^2 = 4$			
3) 4 y = 1			
	1		
4 - Determine uma equação cartesiana das curvas cuia equação na forma polar é dada por]		
4 - Determine uma equação cartesiana das curvas cuja equação na forma polar é dada por:			
a) $r^2 = 2\operatorname{sen}(2\theta)$			
a) $r^2=2{ m sen}(2\theta)$ Solução. $r^2=x^2+y^2$ e ${ m sen}(2\theta)=2{ m sen}\theta$ cos θ implicam em			
a) $r^2=2{ m sen}(2\theta)$ Solução. $r^2=x^2+y^2$ e ${ m sen}(2\theta)=2{ m sen}\theta$ cos θ implicam em			
a) $r^2 = 2\operatorname{sen}(2\theta)$ Solução. $r^2 = x^2 + y^2$ e $\operatorname{sen}(2\theta) = 2\operatorname{sen}\theta \cos\theta$ implicam em $x^2 + y^2 = 4\operatorname{sen}\theta \cos\theta = 4\frac{x}{\sqrt{x^2 + y^2}}\frac{y}{\sqrt{x^2 + y^2}} = \frac{4xy}{x^2 + y^2} \Rightarrow x^2 + y^2 \stackrel{?}{=} 4xy.$			
a) $r^2=2{ m sen}(2\theta)$ Solução. $r^2=x^2+y^2$ e ${ m sen}(2\theta)=2{ m sen}\theta$ cos θ implicam em			
a) $r^2 = 2 \operatorname{sen}(2\theta)$ Solução. $r^2 = x^2 + y^2$ e $\operatorname{sen}(2\theta) = 2 \operatorname{sen}\theta \cos\theta$ implicam em $x^2 + y^2 = 4 \operatorname{sen}\theta \cos\theta = 4 \frac{x}{\sqrt{x^2 + y^2}} \frac{y}{\sqrt{x^2 + y^2}} = \frac{4xy}{x^2 + y^2} \implies x^2 + y^2 \stackrel{?}{=} 4xy$. b) $r = \frac{6}{2 - 3 \operatorname{sen}\theta}$			
a) $r^2=2\sin(2\theta)$ Solução. $r^2=x^2+y^2$ e $\sin(2\theta)=2\sin\theta\cos\theta$ implicam em $x^2+y^2=4\sin\theta\cos\theta=4\frac{x}{\sqrt{x^2+y^2}}\frac{y}{\sqrt{x^2+y^2}}=\frac{4xy}{x^2+y^2}\Rightarrow x^2+y^2\stackrel{?}{=}4xy.$ b) $r=\frac{6}{2-3\sin\theta}$ Solução. $r=\frac{6}{2-3\sin\theta}\Rightarrow 2r-3r\sin\theta=6 \Rightarrow \pm 2\sqrt{x^2+y^2}-3y=6$, ou seja, a equação			
a) $r^2 = 2 \operatorname{sen}(2\theta)$ Solução. $r^2 = x^2 + y^2$ e $\operatorname{sen}(2\theta) = 2 \operatorname{sen}\theta \cos\theta$ implicam em $x^2 + y^2 = 4 \operatorname{sen}\theta \cos\theta = 4 \frac{x}{\sqrt{x^2 + y^2}} \frac{y}{\sqrt{x^2 + y^2}} = \frac{4xy}{x^2 + y^2} \implies x^2 + y^2 \stackrel{?}{=} 4xy$. b) $r = \frac{6}{2 - 3 \operatorname{sen}\theta}$			
a) $r^2=2\sin(2\theta)$ Solução. $r^2=x^2+y^2$ e $\sin(2\theta)=2\sin\theta\cos\theta$ implicam em $x^2+y^2=4\sin\theta\cos\theta=4\frac{x}{\sqrt{x^2+y^2}}\frac{y}{\sqrt{x^2+y^2}}=\frac{4xy}{x^2+y^2}\Rightarrow x^2+y^2\stackrel{?}{=}4xy.$ b) $r=\frac{6}{2-3\sin\theta}$ Solução. $r=\frac{6}{2-3\sin\theta}\Rightarrow 2r-3r\sin\theta=6 \Rightarrow \pm 2\sqrt{x^2+y^2}-3y=6$, ou seja, a equação			